伏是什么意思| 蝎子长什么样| 尿酸高不能吃什么食物| 舌苔腻是什么意思| 更年期出汗吃什么药好| 米五行属什么| 冷幽默是什么意思| 膀胱癌有什么症状| sp是什么的缩写| 尿道炎症状吃什么药| 男方派去接亲要说什么| 怡什么意思| 主动脉夹层是什么原因引起的| 灰溜溜是什么意思| 弄虚作假是什么生肖| 高考准考证有什么用| elle中文叫什么| dsd是什么意思| 五字五行属什么| 潮起潮落是什么意思| 金色葡萄球菌最怕什么| 什么是双飞| 细菌感染发烧吃什么药| 美人坯子是什么意思| 脚为什么脱皮| 血脂稠吃什么| 孕妇吃榴莲对胎儿有什么好处| 安吉白茶属于什么茶| 为什么香蕉不能放冰箱| 素的部首是什么| 尿道炎吃什么药最好| 之际是什么意思| 做水果捞用什么酸奶好| 人生格言是什么| 舌边有齿痕是什么原因| 胃复安又叫什么名字| 交界性心律是什么意思| 怀孕一个月出血是什么情况| 决明子泡水喝有什么功效| 虎皮羊质是指什么生肖| 脸发红是什么原因| 外周血是什么意思| 属马的和什么属相不合| 一对什么| 胃火旺怎么调理吃什么药最好| 杀阴虱用什么药最快| 小叶增生和乳腺增生有什么区别| 什么是居间费| 1月11是什么星座| 回奶吃什么快最有效的| 什么的围巾| 小径是什么意思| 血淀粉酶是查什么的| sle是什么病| 伤官见官是什么意思| 过门是什么意思| 什么是处男| 上海有什么好玩的地方适合小孩子| 白洞是什么东西| 碱性磷酸酶是什么| 啃老是什么意思| 腰酸胀是什么原因男性| 什么叫艾滋病| 双肺纹理增粗是什么意思| 小肚子疼是什么原因女性| 血压正常头晕是什么原因| 侧记是什么意思| 脸跳动是什么原因| 幻听是什么原因引起的| 为什么不建议小孩打流感疫苗| 洗衣机不排水是什么原因| 血糖高适合吃什么蔬菜| 丹五行属性是什么| 下面痒用什么清洗最好| 护肝养肝吃什么药最好| 哈尔滨机场叫什么名字| 肌层回声不均匀是什么意思| pes是什么材料| 一起共勉是什么意思| 左侧肋骨下方疼痛是什么原因| 邦顿手表是什么档次| 桔子树用什么肥料最好| 吃石斛有什么功效| 被跳蚤咬了涂什么药膏| 2月24日是什么星座| 女生排卵期是什么时候| 咳嗽肺疼是什么原因| 豹纹守宫吃什么| 怀孕吃鹅蛋有什么好处| 腿疼是什么原因| 12月7号是什么星座| 母亲属虎孩子属什么好| 维生素b6主治什么病| 肛肠科属于什么科| 乌鸦反哺是什么意思| 制加手念什么| 年轻人为什么会低血压| 神机妙算是什么意思| 气血虚挂什么科| 贫血吃什么补血好| ubras是什么牌子| 八月二号是什么星座| 方法是什么意思| 哔哩哔哩是什么| 宫寒吃什么药调理最好| 止汗药什么最好| 冥冥之中是什么意思| 海带是什么植物| 生完孩子吃什么补身体| 一花一世界下一句是什么| 成双成对是什么生肖| crp高是什么意思| 喝什么茶养肝护肝最好| 疖是什么意思| 香菜不能和什么一起吃| 武汉有什么好玩的| 玄是什么颜色| 迁单是什么意思| 喝绿豆汤有什么好处| 什么是音爆| o型血是什么血| 算力是什么| 肛塞有什么作用| 屁股有痣代表什么| 倪字五行属什么| 阴道发臭是什么原因| 立夏是什么意思| 卵泡破裂有什么症状| 紫癜吃什么好得快| 螃蟹的血是什么颜色的| 静脉曲张是什么病| 什么是pv| 什么空调| 排卵日和排卵期有什么区别| 五月初五是什么星座| 喝茶拉肚子是什么原因| 项羽为什么不杀项伯| 女生过生日送什么礼物好| 幼儿园转学需要什么手续| 羊水偏多对胎儿有什么影响| 木指什么生肖| 朱元璋是什么朝代| 什么是正骨| 三级警督是什么级别| 肠梗阻挂什么科| 血用什么可以洗掉| herry是什么意思| 亲子鉴定去医院挂什么科| 你为什么不快乐| 羟基丁酸在淘宝叫什么| 脂肪瘤去医院挂什么科| 早上起床胃疼是什么原因| 西瓜什么季节成熟| 默契的意思是什么| amber是什么意思| 户籍类型是什么| 灵魂摆渡是什么意思| 反复口腔溃疡是什么原因| 胸部发炎是什么症状| ct 是什么| 肝脏纤维化是什么意思| 宝宝便秘吃什么食物好| 鼻咽癌有什么症状| 什么无终| 中老年人补钙吃什么牌子的钙片好| 广东人吃什么| 人为什么会发烧| 白细胞阴性什么意思| 宫颈肥大伴纳氏囊肿是什么意思| 孩子吃什么有助于长高| 心肌缺血吃什么药管用| 5月19号是什么星座| 1995年五行属什么| 一什么三什么的成语| 痛风在医院挂什么科| 2009年是什么生肖| 鸡眼是什么| 1月11日是什么星座| 什么人不能摆放大象| 姓陆的女孩取什么名字好| 晚上8点到9点是什么时辰| 血象高会导致什么后果| 乙肝病毒表面抗体高是什么意思| 7点是什么时辰| 胃疼买什么药| 属猪的五行属什么| 这是什么表情包| 红枣为什么要炒黑再泡水喝| 云南有什么好吃的| 氩弧焊对身体有什么危害| 全自动洗衣机不排水是什么原因| 受之无愧的意思是什么| nova是什么牌子| 猪肝炒什么| 令人发指是什么意思| 脂肪肝有什么症状| 雌雄是什么意思| 玻璃体混浊吃什么药好| 晚上睡不着觉吃什么药| 汉语什么意思| 右手发麻是什么病的前兆| 为什么会梦游| 带环了月经推迟不来什么原因| 去肝火喝什么茶效果最好| 什么首什么胸| o型血和b型血的孩子是什么血型| navy是什么意思| cup什么意思| 数不胜数是什么生肖| 不孕吐的人说明什么| 甲沟炎什么症状| 什么是黑色素肿瘤| 乔迁新居送什么礼物| 失眠吃什么药见效快| 心火旺吃什么中药| 看乙肝挂什么科| 什么是云| 黑皮肤适合穿什么颜色的衣服| 珐琅是什么| 什么肉不含嘌呤| 颈椎痛挂什么科| 喝咖啡胃疼是什么原因| 05年属鸡的是什么命| 头晕没精神是什么原因| 胸前长痘痘是什么原因| 望梅止渴是什么梅| 一百岁叫什么之年| 什么是借读生| pgr是什么意思| igc是什么意思| 成什么结什么| 狐假虎威告诉我们什么道理| 什么叫三观| 什么深似海| blacklabel是什么牌子| 什么什么多腔| 舌根部淋巴滤泡增生吃什么药| 拉肚子挂什么科| guava是什么水果| 2026年是什么命| 肠胃炎引起的发烧吃什么药| 金风送爽是什么意思| 4月19号是什么星座| 煮羊肉放什么调料| 拉血是什么原因| 害喜是什么意思| 腿总是抽筋是什么原因| 梦见眉毛掉了什么预兆| 32周做什么检查| 乳酸杆菌阳性什么意思| 龟头炎的症状是什么样| 牙槽骨吸收是什么意思| 变化无常的意思是什么| 右腿麻木是什么征兆| 胆汁反流用什么药好| 印度属于什么亚| police是什么意思| 精梳棉是什么面料| 孕妇感冒了可以吃什么药| 为什么会得红斑狼疮| 丁毒豆泡酒能治什么病| 臭酸是什么| 石榴叶子泡水喝有什么功效| 正装是什么样的衣服| 百度

物联网的现实:2025年全球市场规模将不到0.5..

百度 要说刘德华当年有多迷人,那可以说是人见人爱,花见花开,已故香港巨星梅艳芳深爱他一生,至死还对他念念不忘,他的歌迷杨丽娟为了参加他的演唱会,见上他一面倾家荡产,父亲卖房卖肾最后跳海身亡,弄得家破人亡。

BERT is a model for natural language processing developed by Google that learns bi-directional representations of text to significantly improve contextual understanding of unlabeled text across many different tasks.

It’s the basis for an entire family of BERT-like models such as RoBERTa, ALBERT, and DistilBERT.

 

What Makes BERT Different?

Bidirectional Encoder Representations from Transformers (BERT) was developed by Google as a way to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. It was released under an open-source license in 2018. Google has described BERT as the “first deeply bidirectional, unsupervised language representation, pre-trained using only a plain text corpus” (Devlin et al. 2018).

Bidirectional models aren’t new to natural language processing (NLP). They involve looking at text sequences both from left to right and from right to left. BERT’s innovation was to learn bidirectional representations with transformers, which are a deep learning component that attends over an entire sequence in parallel in contrast to the sequential dependencies of RNNs. This enables much larger data sets to be analyzed and models to be trained more quickly. Transformers process words in relation to all the other words in a sentence at once rather than individually, using attention mechanisms to gather information about the relevant context of a word and encoding that context in a rich vector that represents it. The model learns how a given word’s meaning is derived from every other word in the segment.

Previous word embeddings, like that of GloVe and Word2vec, work without context to generate a representation for each word in the sequence. For example, the word “bat” would be represented the same way whether referring to a piece of sporting gear or a night-flying animal. ELMo introduced deep contextualized representations of each word based on the other words in the sentence using a bi-directional long short term memory (LSTM). Unlike BERT, however, ELMo considered the left-to-right and right-to-left paths independently instead of as a single unified view of the entire context.

Because the vast majority of BERTs parameters are dedicated to creating a high-quality contextualized word embedding, the framework is considered to be very suitable for transfer learning. By training BERT on self-supervised tasks (ones in which human annotations are not required) like language modeling, massive unlabeled datasets such as WikiText and BookCorpus can be used, which comprise more than 3.3 billion words. To learn some other task, like question-answering, the final layer can be replaced with something suitable for the task and fine-tuned.

The arrows in the image below indicate the information flow from one layer to the next in three different NLP models.

Diagram showing information flow from one layer to the next in three different NLP models.
Image source: Google AI Blog

BERT models are able to understand the nuances of expressions at a much finer level. For example, when processing the sequence “Bob needs some medicine from the pharmacy. His stomach is upset, so can you grab him some antacids?” BERT is better able to understand that  “Bob,” “his”, and “him” are all the same person. Previously, the query “how to fill bob’s prescriptions” might fail to understand that the person being referenced in the second sentence is Bob. With the BERT model applied, it’s able to understand how all these connections relate.

Bi-directional training is tricky to implement because conditioning each word on both the previous and next words by default includes the word that’s being predicted in the multilayer model. BERT’s developers solved this problem by masking predicted words as well as other random words in the corpus. BERT also uses a simple training technique of trying to predict whether, given two sentences A and B, B is the antecedent of A or a random sentence.

Why BERT?

Natural language processing is at the center of much of the commercial artificial intelligence research being done today. In addition to search engines, NLP has applications in digital assistants, automated telephone response, and vehicle navigation, to name just a few. BERT has been called a game-changer because it provides a single model trained upon a large data set that has been shown to achieve breakthrough results on a wide range of NLP tasks.

BERT’s developers said models can be adapted to a “wide range of use cases, including question answering and language inference, without substantial task-specific architecture modifications. BERT doesn’t need to be pre-trained with labeled data, so it can learn using any plain text.

KEY BENEFITS (use cases)

BERT can be fine-tuned for many NLP tasks. It’s ideal for language understanding tasks like translation, Q&A, sentiment analysis, and sentence classification.

Targeted search

While today’s search engines do a pretty good job of understanding what people are looking for if they format queries properly, there are still plenty of ways to improve the search experience. For people with poor grammar skills or who don’t speak the language of the search engine provider, the experience can be frustrating. Search engines also frequently require users to experiment with variations of the same query to find the one that delivers the best results.

An improved search experience that saves even 10% of the 3.5 billion searches people conduct on Google alone every day adds up to significant savings in time, bandwidth, and server resources. From a business standpoint, it also enables search providers to better understand user behavior and serve up more targeted advertising.

Better understanding of natural language also improves the effectiveness of data analytics and business intelligence tools by enabling non-technical users to retrieve information more precisely and cutting down on errors related to malformed queries.

Accessible navigation

More than one in eight people in the United States has a disability, and many are limited in their ability to navigate physical and cyberspace. For people who must use speech to control wheelchairs, interact with websites, and operate devices around them, natural language processing is a life necessity. By improving response to spoken commands, technologies like BERT can improve quality of life and even enhance personal safety in situations in which rapid response to circumstances is required.

Why BERT Matters to...

Machine Learning Researchers

Invoking change in natural language processing equated to that of AlexNet on computer vision, BERT is markedly revolutionary to the field. The ability to replace only the final layer of the network to customize it for some new task means that one can easily apply it to any research area of interest. Whether the goal is translation, sentiment analysis, or some new task yet to be proposed, one can rapidly configure that network to try it out. With over 8,000 citations to date, this model's derivatives consistently show up to claim state-of-the-art on language tasks.

Software Developer

With BERT, the computational limitations to put state-of-the-art models into production are greatly diminished due to the wide availability of pretrained models on large datasets. The inclusion of BERT and its derivatives in well-known libraries like Hugging Face also means that a machine learning expert isn't necessary to get the basic model up and running.

BERT has established a new mark in natural language interpretation, demonstrating that it can understand more intricacies of human speech and answer questions more precisely than other models.

Why BERT is Better on GPUs

Conversational AI is an essential building block of human interactions with intelligent machines and applications–from robots and cars to home assistants and mobile apps. Getting computers to understand human languages, with all their nuances, and respond appropriately has long been a “holy grail” of AI researchers. But building systems with true natural language processing (NLP) capabilities was impossible before the arrival of modern AI techniques powered by accelerated computing.

BERT runs on supercomputers powered by NVIDIA GPUs to train its huge neural networks and achieve unprecedented NLP accuracy, impinging in the space of known as human language understanding. While there have been many natural language processing approaches, human-like language ability has remained an elusive goal for AI. With the arrival of massive Transformer-based language models like BERT and GPUs as an infrastructure platform for these state-of-the-art models, we are now seeing rapid progress on difficult language understanding tasks. AI like this has been anticipated for many decades. With BERT, it has finally arrived.

Model complexity drives the accuracy of NLP, and larger language models dramatically advance the state-of-the-art in natural language processing (NLP) applications such as question-answering, dialog systems, summarization, and article completion. BERT-Base was created with 110 million parameters, while the expanded BERT-Large model involves 340 million parameters. Training is highly parallelized, which makes it a good use case for distributed processing on GPUs. BERT models have even been shown to scale well to huge sizes like the 3.9 billion parameter Megatron-BERT.

The complexity of BERT, as well as training on enormous datasets, requires massive performance. This combination needs a robust computing platform to handle all the necessary computations to drive both fast execution and accuracy. The fact that these models can work on massive unlabeled datasets have made them a hub of innovation for modern NLP and by extension a strong choice for the coming wave of intelligent assistants with conversational AI applications across many use cases.

The NVIDIA platform provides the programmability to accelerate the full diversity of modern AI including Transformer-based models. In addition, data center scale design, combined with software libraries and direct support for leading AI frameworks, provides a seamless end-to-end platform for developers to take on the most daunting NLP tasks.

In a test using NVIDIA’s DGX SuperPOD system based on a massive cluster of DGX A100 GPU servers connected with HDR InfiniBand NVIDIA achieved a record BERT training time of .81 minutes using the MLPerf Training v0.7 benchmark. By comparison, Google’s TPUv3 logged a time of more than 56 minutes on the same test.

胆囊切除后有什么影响 尿隐血3十是什么病 甲亢在中医里叫什么病 缺钾是什么原因引起的 跑步后脸红是什么原因
晴空万里什么意思 放是什么偏旁 手上有红点是什么原因 肝s5是什么意思 性功能下降是什么原因
什么清肠茶好 蚂蚁长什么样子 和谐什么意思 月经少吃什么好排血多 总放屁还特别臭是什么原因
皮肤黑穿什么颜色的衣服显白 甲状腺功能亢进吃什么药 吐了后吃点什么能舒服 晕车吃什么好 痰核是什么意思
熬笔是什么意思hcv8jop9ns1r.cn 心慌心悸是什么原因hcv7jop9ns3r.cn 西梅不能和什么一起吃0297y7.com 射不出来是什么原因hcv8jop8ns7r.cn 2014是什么年hcv8jop1ns6r.cn
泡泡棉是什么面料hcv7jop7ns1r.cn 癫痫是什么症状youbangsi.com 河北有什么市hcv8jop7ns2r.cn 晚上老咳嗽是什么原因hcv8jop0ns3r.cn 胆囊壁欠光滑是什么意思hcv9jop4ns6r.cn
发改委是管什么的hcv7jop7ns2r.cn 关节退行性改变是什么意思hanqikai.com 鹤字五行属什么hcv8jop7ns4r.cn 把脉左右手代表什么hcv9jop2ns2r.cn 脚烧热是什么原因hcv7jop7ns4r.cn
口气重是什么原因hcv7jop6ns7r.cn 狐狸是什么科hcv8jop7ns7r.cn 梦见小白蛇是什么预兆hcv9jop3ns7r.cn 疥疮用什么药hcv9jop3ns0r.cn 数字化摄影dr是检查什么zhongyiyatai.com
百度